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Background: Batteryless intelligent acoustic applications g,
see

System Requirements:

|.  Wide-area application
2. Resource efficiency
3. Reliable service

4. Accurate prediction




Baseline: Cloud offloading [IPSN ‘24]

1-10KB

(b) Cloud Offloading

Ahn J. et al. "Split Learning-based Sound Event Detection in Energy-Constrained Sensor Devices." IPSN ‘24
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Baseline: Cloud offloading [IPSN ‘24]

Pros:

+ High accuracy by leveraging server

+ LPWAN:Ss to support long-range
wide-area communication

Cons:

Resource inefficient: Large payload
and multi-round communication

Not reliable and dependent on serve

Prior Works  Edge Optimize

Wireless

Payload Size Comm-adapt ULP Reliable

DeepCOD [58] Cloud offloading |Wi-Fi,LTE
FLEET [17] Early exits BLE
SEDAC [3] Cloud offloading |BLE
CACTUS [42] Micro-classifier |N/A
LimitNet [15] Cloud offloading |LPWANSs
ORCA Cloud assistance LoRa

0.1-5KB
2-9KB
N/A
11.5-43.9MB
0.3-3.2KB
0-0.1KB

NS Xx %X\ S\

N X X N X X

N X X X X X

Wide-area scenarios

[58]YaoS. etal. "Deep compressive offloading: Speeding up neural network inference by trading edge computation for network latency." SenSys ‘20
[17] Huang J. et al. "Re-thinking computation offload for efficient inference on loT devices with duty-cycled radios." MobiCom '23

[3] Mohammad Mehdi R. etal. "CACTUS: Dynamically Switchable Context-aware micro-Classifiers for Efficient 10T Inference." MobiSys ‘24

[42] Hojjat A. et al. "LimitNet: Progressive, Content-Aware Image Offloading for Extremely Weak Devices & Networks." MobiSys ‘24

Resource efficiency

[15] Ahn J. et al. "Split Learning-based Sound Event Detection in Energy-Constrained Sensor Devices." IPSN ‘24

Reliability
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Challenges for offloading on LPWANSs o

» 40x for uplink, 6x
power for downlink

= 0.3-5.5 kbps (125 kHz
LoRa channel)

» Audio has large payload
(44.1kHz)

N

Environmental factors » Frequent packet loss
change channel condition

Unreliable
offloading

Reliable comm. requires

dynamic energy cost » Costly retransmission

Budgets are fixed

Support cloud-independent
inference



Research Question e,
see

Besides generating inference results, what tasks can a server perform under

weak connectivity and limited resources?



Cloud Assistance System Design o
see

Step |: Low-resolution compression for cloud feature selection

» Feature selection is a resource-intensive process, should be done by server

» Doesn’t require high resolution —

» Feature importance requires

LoRa LoRa
3 I S Feature =
O § 7| 0-0.1KB Selection |~10 bytes

Preprocessing On-device

inference



Cloud Assistance System Design o
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Step |: Low-resolution compression for cloud feature selection

» Feature selection is a resource-intensive process, should be done by server

» Doesn’t require high resolution —

= Feature importance requires

Resolution Classification

W all payloads
Low-resolution x <\/ /
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Cloud Assistance System Design o
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Step |: Low-resolution compression for cloud feature selection

» Feature selection is a resource-intensive process, should be done by server

» Doesn’t require high resolution —

» Feature importance requires

LoRa LoRa
0 I Y, Feature 'V
O § 7| 0-0.1KB Selection |~10 bytes
Preprocessing On-device
inference



Cloud Assistance System Design o
see

Step 2: Local bypass for reliable cloud-independent inference

» Keep the inference pipeline on-device
* When packet losses occur, perform on-device inference

* No retransmission required — Communication and energy efficiency

—
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Preprocessing On-device
inference
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Cloud Assistance System Design o

see
Step 3: Optimization for Dynamic Energy Cost under Fixed Budget

* W/ireless channel is unstable — energy cost for reliable transmission is also variable

» Use LoRa configs from Adaptive Data Rate (ADR) to estimate the cost of transmission

Channel
Iégrlj}?gs ADR O est?r:r;:ion
LoRa LoRa
O I N Feature P~
O § 9| 0-0.1KB | Selection |~10 bytes
Y- -
Local Bypass
Preprocessing On-device
inference
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Step 3: Optimization for Dynamic Energy Cost (@),

Fixed budgets See

Energy constraints / \
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Step 3: Optimization for Dynamic Energy Cost (@),
see

Intuition: when cost is high, use smaller payload/ lower resolution trade accuracy

Energy cost

1 per byte E._. (%) < constant budget
by configs
from ADR
Bypass
v
s i) g Intorones

W
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Cloud-Assiste
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Step 3: Optimization for Dynamic Energy Cost (@),
see

Optimize uplink resolution for accuracy given costs and energy constraints

Accuracy Cost Energy constraint

max aTx s.t. |Erx(x) +|Epre + Esleep + Epx + Ejnf < Ecap

X

11x =1, x; = {0,1}
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Testbed Implementation
see
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System Evaluations o
see

Datasets: ESC50, US8K, DESED

- —@— AE[17,58] —m—AAC[53] == ORCA
Baselines: —x—MP3[53] == Prog[3,15]
» Autoencoder [SenSys 20, MobiCom 23] 0—0”——3-—: At %=%
80 ~F
* Audio compression: MP3 and AAC = o v ./
= Progressive offloading with time-domain 960 /
attention [MobiSys 24, IPSN 24] g )
< I
* On-device inference [IWMUT ‘19] 40 I
m
Payload: 4x-8x payload savings with 5-20 p.p. 10’ 10° 10° 10"
accuracy advantages Payload (Byte)

[58]YaoS. etal. "Deep compressive offloading: Speeding up neural network inference by trading edge computation for network latency." SenSys ‘24

[17]1 Huang J. et al. "Re-thinking computation offload for efficient inference on loT devices with duty-cycled radios." MobiCom '23

[15] Hojjat A. et al. "LimitNet: Progressive, Content-Aware Image Offloading for Extremely Weak Devices & Networks." MobiSys ‘24

[31Ahn J. et al. "Split Learning-based Sound Event Detection in Energy-Constrained Sensor Devices." IPSN ‘24 16
[28] Lee, S., et al. Intermittent learning: On-device machine learning on intermittently powered system. IMWUT ‘19



System Evaluations oo
see

Energy & latency: 80x Energy savings, 220x Latency reductions with comparable accuracy
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[28] Lee, S., et al. Intermittent learning: On-device machine learning on intermittently powered system. IMWUT ‘19



Conclusion

We propose a novel cloud-assistance ML framework on LPWANSs
= Save 4x-8x payloads through cloud assistance framework

= Improve 5-20 p.p. accuracy using cloud feature selection and on-device inference
= Enable local bypassing to reduce the cloud dependency and improve reliability

= Reduce energy cost by 80x and latency by 220x under dynamic wireless channel

see
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Read our paper here!

Thank you for listening!

Q&A
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