UC San Diego

Offload Rethinking by Cloud Assistance for Efficient Environmental Sound Recognition on LPWANs

<u>Le Zhang</u>*, Quanling Zhao*, Run Wang, Shirley Bian, Onat Gungor, Flavio Ponzina, Tajana Rosing

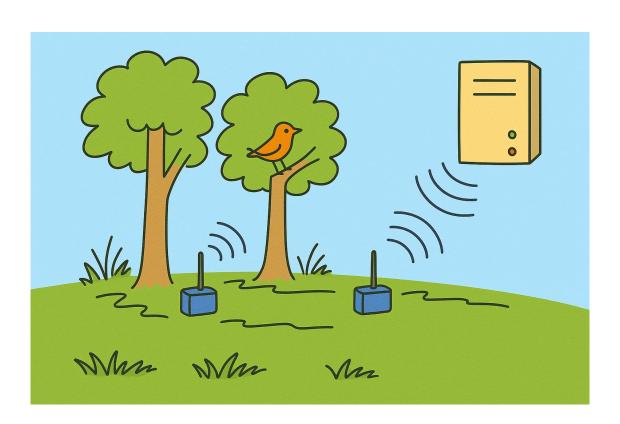
University of California San Diego (UCSD)

(*These authors contributed equally to this research)

System Energy Efficiency Lab

seelab.ucsd.edu

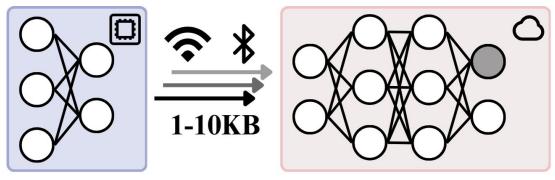
Background: Batteryless intelligent acoustic applications



System Requirements:

- I. Wide-area application
- 2. Resource efficiency
- 3. Reliable service
- 4. Accurate prediction

Baseline: Cloud offloading [IPSN '24]



(b) Cloud Offloading

Baseline: Cloud offloading [IPSN '24]

Pros: Cons:

- High accuracy by leveraging server
- LPWANs to support long-range wide-area communication

Short range radio (WiFi, BLE)

- Resource inefficient: Large payload and multi-round communication

Not reliable and dependent on server

Prior Works	Edge Optimize	Wireless	•	Comm-adapt	ULP	Reliable
DeepCOD [58]	Cloud offloading	Wi-Fi,LTE	0.1-5KB	✓	X	Х
FLEET [17]	Early exits	BLE	2-9KB	✓	X	X
SEDAC [3]	Cloud offloading	BLE	N/A	X	1	X
CACTUS [42]	Micro-classifier	N/A	11.5-43.9MB	×	X	X
LimitNet [15]	Cloud offloading	LPWANs	0.3-3.2KB	✓	X	X
ORCA	Cloud assistance	LoRa	0-0.1KB	1	1	1

Reliability

Wide-area scenarios

Resource efficiency

[58]Yao S. et al. "Deep compressive offloading: Speeding up neural network inference by trading edge computation for network latency." SenSys '20 [17] Huang J. et al. "Re-thinking computation offload for efficient inference on IoT devices with duty-cycled radios." MobiCom '23 [3] Mohammad Mehdi R. etal. "CACTUS: Dynamically Switchable Context-aware micro-Classifiers for Efficient IoT Inference." MobiSys '24 [42] Hojjat A. et al. "LimitNet: Progressive, Content-Aware Image Offloading for Extremely Weak Devices & Networks." MobiSys '24 [15] Ahn J. et al. "Split Learning-based Sound Event Detection in Energy-Constrained Sensor Devices." IPSN '24

Challenges for offloading on LPWANs

- 40x for uplink, 6x power for downlink
- 0.3–5.5 kbps (125 kHz LoRa channel)
- Audio has large payload (44.1kHz)

Adaptation to dynamic energy costs

%

Unstable wireless channel & Dynamic energy cost

- Environmental factors change channel condition
- Reliable comm. requires dynamic energy cost
- Budgets are fixed

Unreliable offloading

- Frequent packet loss
- Costly retransmission

Minimize payload size & audio-adapted offloading

Support cloud-independent inference

Research Question

Besides generating inference results, what tasks can a server perform under weak connectivity and limited resources?

Step 1: Low-resolution compression for cloud feature selection

- Feature selection is a resource-intensive process, should be done by server
- Doesn't require high resolution → smaller uplink payloads (<100 bytes)
- Feature importance requires even smaller downlink payloads (~10 bytes)

Step I: Low-resolution compression for cloud feature selection

- Feature selection is a resource-intensive process, should be done by server
- Doesn't require high resolution → smaller uplink payloads (<100 bytes)
- Feature importance requires even smaller downlink payloads (~10 bytes)

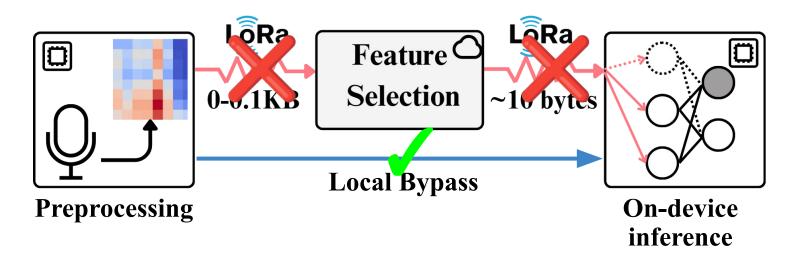
	Resolution	Classification	Feature selection	Small payloads
Low-resolution		×		
High-resolution				×

Step 1: Low-resolution compression for cloud feature selection

- Feature selection is a resource-intensive process, should be done by server
- Doesn't require high resolution → smaller uplink payloads (<100 bytes)
- Feature importance requires even smaller downlink payloads (~10 bytes)

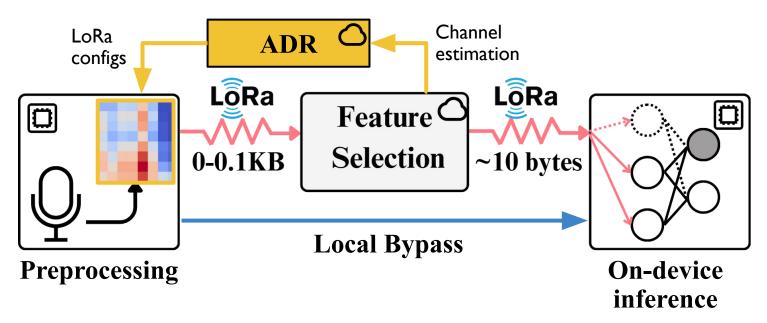
Step 2: Local bypass for reliable cloud-independent inference

- Keep the inference pipeline on-device
- When packet losses occur, perform on-device inference
- No retransmission required → Communication and energy efficiency

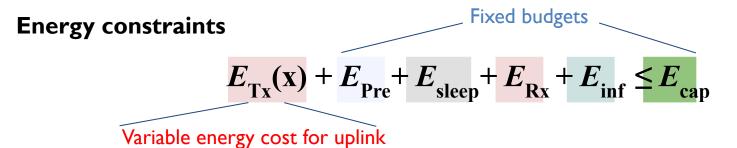


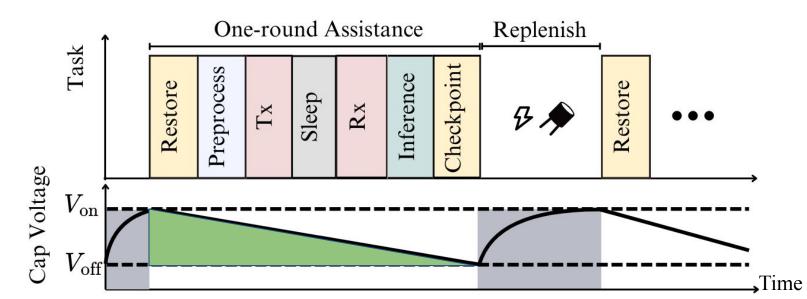
Step 3: Optimization for *Dynamic Energy Cost* under Fixed Budget

- Wireless channel is unstable \rightarrow energy cost for reliable transmission is also variable
- Use LoRa configs from Adaptive Data Rate (ADR) to estimate the cost of transmission



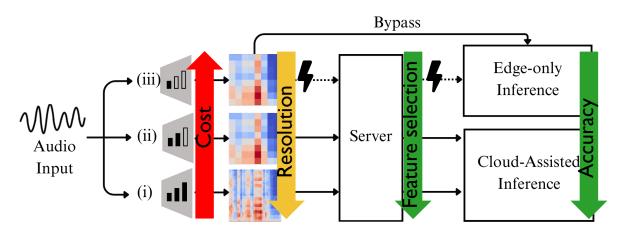
Step 3: Optimization for Dynamic Energy Cost





Step 3: Optimization for Dynamic Energy Cost

Intuition: when cost is high, use smaller payload/ lower resolution trade accuracy



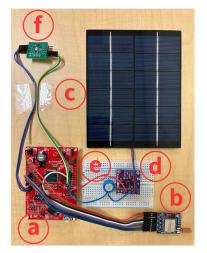
Step 3: Optimization for Dynamic Energy Cost

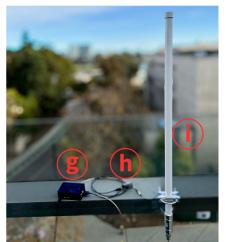
Optimize uplink resolution for accuracy given costs and energy constraints

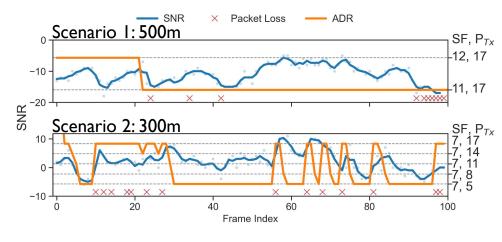
Accuracy Cost Res Energy constraint
$$\max_{x} \begin{bmatrix} a^T x \end{bmatrix} \text{ s.t. } E_{\text{Tx}}(x) + E_{\text{Pre}} + E_{\text{sleep}} + E_{\text{Rx}} + E_{\text{inf}} \leq E_{\text{cap}}$$

$$\mathbf{1}^T x = 1, \ x_i = \{0, 1\}$$

Testbed Implementation







Edge device

Server

Traces

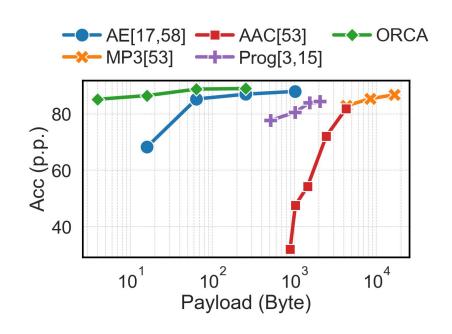
System Evaluations

Datasets: ESC50, US8K, DESED

Baselines:

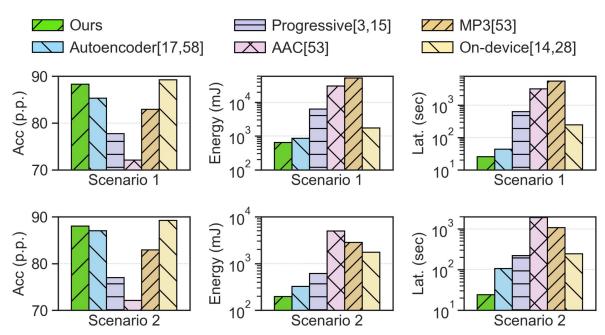
- Autoencoder [SenSys '20, MobiCom '23]
- Audio compression: MP3 and AAC
- Progressive offloading with time-domain attention [MobiSys '24, IPSN '24]
- On-device inference [IWMUT '19]

Payload: 4x-8x payload savings with 5–20 p.p. accuracy advantages



System Evaluations

Energy & latency: 80x Energy savings, 220x Latency reductions with comparable accuracy



[58] Yao S. et al. "Deep compressive offloading: Speeding up neural network inference by trading edge computation for network latency." SenSys '24 [17] Huang J. et al. "Re-thinking computation offload for efficient inference on IoT devices with duty-cycled radios." MobiCom '23 [15] Hojjat A. et al. "LimitNet: Progressive, Content-Aware Image Offloading for Extremely Weak Devices & Networks." MobiSys '24 [3] Ahn J. et al. "Split Learning-based Sound Event Detection in Energy-Constrained Sensor Devices." IPSN '24 [28] Lee, S., et al. Intermittent learning: On-device machine learning on intermittently powered system. IMWUT '19

Conclusion

We propose a novel cloud-assistance ML framework on LPWANs

- Save 4x-8x payloads through cloud assistance framework
- Improve 5-20 p.p. accuracy using cloud feature selection and on-device inference
- Enable local bypassing to reduce the cloud dependency and improve reliability
- Reduce energy cost by 80x and latency by 220x under dynamic wireless channel

Thank you for listening!

Q&A

Read our paper here!